BIRD: Ein Tropfen Blut, viele Diagnosen
Stellen Sie sich ein Szenario vor, in dem ein einziger Blutstropfen innerhalb von Minuten umfassende Gesundheitsinformationen liefert. Einem solchen Ziel sind Forschende um Dr. Mihaela Žigman von der Ludwig-Maximilians-Universität München (LMU) und dem Max-Planck-Institut für Quantenoptik (MPQ) ein Stück nähergekommen. In Zusammenarbeit mit dem Helmholtz Zentrum München haben sie ein Gesundheitsscreening-Tool entwickelt, das mithilfe von Infrarotlicht und maschinellem Lernen mehrere Gesundheitszustände mit nur einer Messung erkennen kann.
Die Infrarotspektroskopie ist eine Technik, bei der Infrarotlicht zur Analyse der molekularen Zusammensetzung von Substanzen eingesetzt wird. Es ist, als würde man Molekülen einen Fingerabdruck abnehmen. Bei der Anwendung auf komplexe Bioflüssigkeiten wie Blutplasma kann die Technologie detaillierte Informationen über molekulare Signale liefern. Obwohl die Infrarotspektroskopie seit Langem in der Chemie und der Industrie eingesetzt wird, hat sie sich in der medizinischen Diagnostik noch nicht durchgesetzt.
Dieser Aufgabe hat sich nun ein Team von Forschenden der Broadband Infrared Diagnostics Forschungsgruppe (BIRD) im attoworld-Team unter der Leitung von Dr. Mihaela Žigman angenommen. Nachdem die BIRD-Gruppe bereits die Methode zum molekularen Fingerabdruck von menschlichem Plasma entwickelt hat, arbeiteten die Forschenden nun mit dem Team von Professorin Dr. Annette Peters vom Helmholtz Zentrum München zusammen, das eine groß angelegte Bevölkerungsstudie durchgeführt hat. Gemeinsam haben sie das sogenannte Infrarot-molekulare Fingerprinting auf eine diverse Bevölkerung zum ersten Mal angewendet. Dazu wurde das Blutplasma von Tausenden von Teilnehmern im Rahmen der KORA-Studie, einem umfassenden repräsentativen Gesundheitsforschungsprojekt im Raum Augsburg, gemessen.
Weitreichende Anwendungsmöglichkeiten
Mehr als 5.000 Blutplasmaproben wurden so mittels Fourier-Transformations-Infrarot-Spektroskopie (FTIR) untersucht. Tarek Eissa und Cristina Leonardo vom BIRD-Team der LMU analysierten die Blutproben mit Infrarotlicht, um molekulare Fingerabdrücke zu vermessen. Das Team wandte maschinelles Lernen an, um die Korrelation zwischen den gemessenen molekularen Fingerabdrücken und den medizinischen Daten zu analysieren. Sie entdeckten, dass diese Fingerabdrücke wertvolle Informationen enthalten, die ein schnelles Gesundheitsscreening ermöglichen. Ein mehrstufiger Computeralgorithmus ist nun in der Lage, zwischen verschiedenen Gesundheitszuständen zu unterscheiden, darunter anormale Blutfettwerte, verschiedene Blutdruckveränderungen und Typ-2-Diabetes, aber überraschenderweise auch Prädiabetes, einer Vorstufe des Diabetes, die oft übersehen wird.
Der Algorithmus konnte den Forschenden zufolge sogar Personen herausfiltern, die gesund waren und über den Untersuchungszeitraum von mehreren Jahren gesund blieben.
Das ist aus zwei Gründen von Bedeutung: Erstens erleben die meisten Menschen in jeder beliebigen Population anormale gesundheitliche Veränderungen. Da wir alle unterschiedlich sind und uns im Laufe der Zeit verändern, ist es daher alles andere als trivial, völlig gesunde Personen zu identifizieren. Zweitens leiden sehr viele Menschen an mehreren Krankheiten in verschiedenen Kombinationen. Traditionell würden Ärzte für jede Krankheit einen neuen Test benötigen.
Mit dem neuen Ansatz lässt sich jetzt nicht nur eine Krankheit feststellen, sondern eine ganze Reihe von Gesundheitsproblemen und komplexen -zuständen mit mehreren Krankheiten gleichzeitig. Darüber hinaus kann es die Entwicklung des metabolischen Syndroms Jahre vor dem Auftreten von Symptomen vorhersagen und so ein Zeitfenster für Interventionen schaffen.
Original Paper:
Weiterführende Informationen:
Lesen Sie dazu auch:
Die Beiträge im News-Bereich werden erstellt vom
X-Press Journalistenbüro GbR
Schwimmbadstr. 29
37520 Osterode am Harz
Web: www.xpress-journalisten.com
E-Mail: redaktion(at)med-lab-portal.de