Künstliche Intelligenz erkennt antibiotikaresistente Bakterien schneller als der Mensch

von | Okt 18, 2024 | Allgemein, Forschung, Gesundheit

Künstliche Intelligenz ist in der Lage, antibiotikaresistente Bakterien zu erkennen. Der Mensch ist genauer, die KI allerdings schneller. Das ist das Ergebnis einer Pilotstudie an der Universität Zürich (UZH). Es war das erste Mal, dass KI zur Detektion antibiotikaresistenter Keime eingesetzt wurde.

Kirby-Bauer-Disk-Diffusionstest von Darmbakterien und Antibiotika getränkte Papierblättchen: Die Antibiotika-Konzentration nimmt mit zunehmender Entfernung ab. Je näher Bakterien an das Testblättchen heranwachsen, desto resistenter sind sie (rote Kreise). (Quelle/Copyright: UZH)
Kirby-Bauer-Disk-Diffusionstest von Darmbakterien und Antibiotika getränkte Papierblättchen: Die Antibiotika-Konzentration nimmt mit zunehmender Entfernung ab. Je näher Bakterien an das Testblättchen heranwachsen, desto resistenter sind sie (rote Kreise). (Quelle/Copyright: UZH)

Das Team um Adrian Egli, UZH-Professor am Institut für Medizinische Mikrobiologie hat untersucht, wie GPT-4 – ein leistungsstarkes KI-Modell von OpenAI – zur Analyse von Antibiotikaresistenzen verwendet werden kann.

Die Forschenden nutzten KI, um einen gängigen Labortest zu interpretieren: den sogenannten Kirby-Bauer-Disk-Diffusionstest. Dieser Test zeigt den Ärzten, welche Antibiotika bei einer bestimmten bakteriellen Infektion wirksam sind und welche nicht. Basierend auf GPT-4 schufen die Wissenschaftler den “EUCAST-GPT-Experten”, der den strengen Richtlinien des EUCAST, des European Committee on Antimicrobial Susceptibility Testing, zur Interpretation von Resistenzmechanismen folgt. Mit den neuesten Daten und Expertenregeln ausgestattet, wurde das System an Hunderten von Bakterien getestet.

“Antibiotikaresistenzen sind weltweit eine wachsende Bedrohung. Wir benötigen dringend schnellere und zuverlässigere Werkzeuge, um sie zu erkennen”, sagt Studienleiter Egli. “Unsere Forschungsarbeit ist der erste Schritt, um KI in der Routinediagnostik einzusetzen, damit Ärztinnen und Ärzte resistente Bakterien schneller identifizieren können.”

Zwar erzielte das KI-System gute Resultate bei der Erkennung bestimmter Resistenztypen, war aber nicht perfekt. Während es gut darin war, Bakterien zu erkennen, die gegen bestimmte Antibiotika resistent sind, markierte es manchmal Mikroben als resistent, obwohl sie es nicht waren. Und das könnte zu möglichen Verzögerungen bei der Behandlung führen. Im Vergleich waren menschliche Experten genauer in der Bestimmung von Resistenzen. Dennoch könnte das KI-System dabei helfen, den Diagnoseprozess zu standardisieren und zu beschleunigen.

Trotz der Einschränkungen hebt die Studie das transformative Potenzial hervor, das KI im Gesundheitswesen hat. Durch die standardisierte Interpretation komplexer Diagnosetests könnte KI letztendlich dazu beitragen, die Variabilität und Subjektivität manueller Auswertungen zu verringern und so die Ergebnisse für die Patienten zu verbessern.

Adrian Egli betont, dass weitere Tests und Verbesserungen erforderlich seien, bevor dieses KI-Tool in Krankenhäusern eingesetzt werden könne. “Unsere Studie ist ein wichtiger erster Schritt, aber wir sind noch weit davon entfernt, menschliche Expertise zu ersetzen. Vielmehr sehen wir KI als ein ergänzendes Werkzeug, das Mikrobiologinnen und -biologen in ihrer Arbeit unterstützen kann”, so Egli.

Originalpublikation

Christian G. Giske, Michelle Bressan, Farah Fiechter, Vladimira Hinic, Stefano Mancini, Oliver Nolte, Adrian Egli. GPT-4 based AI agents – the new expert system for detection of antimicrobial resistance mechanisms? Journal of Clinical Microbiology. 17 October 2024. DOI: https://doi.org/10.1128/jcm.00689-24

Lesen Sie auch

Peptidcocktails gegen Antibiotikaresistenzen – MedLabPortal

Blutproben unter Strom geben Aufschluss über Antibiotikaresistenzen – MedLabPortal


Die Beiträge im News-Bereich werden erstellt vom X-Press Journalistenbüro

Gender-Hinweis. Die in diesem Text verwendeten Personenbezeichnungen beziehen sich immer gleichermaßen auf weibliche, männliche und diverse Personen. Auf eine Doppel/Dreifachnennung und gegenderte Bezeichnungen wird zugunsten einer besseren Lesbarkeit verzichtet.