Johannes Tran-Gia erhält Heisenberg-Professur „Multimodale Bildgebung und Theranostik“

von | Feb. 28, 2025 | Forschung, Nicht kategorisiert

Johannes Tran-Gia, Physiker in der Nuklearmedizin des Uniklinikums Würzburg (UKW), ist zum Universitätsprofessor für „Multimodale Bildgebung und Theranostik“ an der Universität Würzburg ernannt worden. Seine Professur wird in den ersten fünf Jahren von der Deutschen Forschungsgemeinschaft (DFG) im Rahmen des Heisenberg-Programms gefördert. Im Heisenberg-Projekt beschäftigt sich der 40-Jährige mit der „Bildgebungsbasierten Individualisierung der Knochenmarkdosimetrie für Radionuklidtherapien“. Mit neuen bildgebenden Verfahren will er die Strahlenexposition im Knochenmark genauer bestimmen und so die Radionuklidtherapie personalisieren – für maximale Wirkung bei minimalen Nebenwirkungen.

Durch Messungen an 3D-Modellen wie hier der Lendenwirbelsäule, die Johannes Tran-Gia mit seinem Team im 3D-Drucklabor selbst herstellt, werden die speziellen multimodalen Bildgebungsverfahren validiert. | Quelle: Daniel Peter | Copyright: UKW
Durch Messungen an 3D-Modellen wie hier der Lendenwirbelsäule, die Johannes Tran-Gia mit seinem Team im 3D-Drucklabor selbst herstellt, werden die speziellen multimodalen Bildgebungsverfahren validiert. | Quelle: Daniel Peter | Copyright: UKW

Das rote Knochenmark ist eines der Hauptrisikoorgane vieler Radionuklidtherapien, da es aufgrund der hohen Zellteilungsrate besonders strahlenempfindlich ist. Seine Schädigung kann zu schwerwiegenden Nebenwirkungen führen, zum Beispiel Blutarmut durch Mangel an roten Blutkörperchen, Immunschwäche durch Mangel an weißen Blutkörperchen und Blutungsneigung durch Mangel an Blutplättchen. Die Messung der Energiedosis auf das rote Knochenmark ist laut Tran-Gia jedoch besonders schwierig, da nicht die Aktivität im gesamten Knochenmark, sondern gezielt im blutbildenden roten Knochenmark bestimmt werden muss. „Deshalb haben wir spezielle multimodale Bildgebungsverfahren wie dedizierte Magnetresonanztomographie- oder CT-Techniken entwickelt, um den Fett-, Wasser und Knochenanteil im Knochenmark zu bestimmen und so die für die Berechnung der Energiedosis relevante Masse des roten Knochenmarks zu quantifizieren“, sagt Tran-Gia. Validiert werden die Verfahren durch Messungen an 3D-Modellen, die er mit seinem Team im 3D-Drucklabor selbst herstellt. „Mit unseren neuen bildgebenden Verfahren können wir die Verteilung der radioaktiven Substanzen im Körper genauer verfolgen und so die Dosis auf das rote Knochenmark präziser bestimmen“, ergänzt Tran-Gia. Parallel dazu arbeitet er daran, die Bildgebung mit Hilfe von künstlicher Intelligenz zu beschleunigen, um diese in der klinischen Routine effizienter einsetzen zu können. Die Verbesserung dieser Bildgebung war auch das Thema seiner Habilitation. In Zusammenarbeit mit dem National Physics Laboratory in Großbritannien und führenden europäischen Kliniken hat er zudem ein Standardisierungsverfahren für die quantitative Bildgebung in der Dosimetrie entwickelt, um sowohl europaweit als auch weltweit vergleichbare Messergebnisse zu gewährleisten (publiziert in EJNMMI Physics DOI: 10.1186/s40658-021-00397-0).

Prätherapeutische Dosimetrie: Der erste Schritt zur personalisierten Radionuklidtherapie

Auch die Nieren spielen eine wichtige Rolle bei der Dosimetrie, da die meisten radioaktiven Arzneimittel über die Niere ausgeschieden werden und diese daher besonders belastet sind. Derzeit werden die meisten Radionuklidtherapien jedoch mit einer Standarddosierung verabreicht, ohne Rücksicht auf individuelle Unterschiede. „Das bedeutet, dass ein 150 Kilo schwerer Holzfäller die gleiche Therapieaktivität erhält wie eine 50 Kilo leichte zierliche ältere Dame, obwohl ihre Stoffwechsel ganz unterschiedlich sind“, erläutert Johannes Tran-Gia. Das habe zur Konsequenz, dass man das Risiko in Kauf nimmt, neun von zehn Patientinnen und Patienten zu unterdosieren, um eine Person mit einem niedrigeren Stoffwechsel zu schützen. Prätherapeutische Dosimetrie könnte hier Abhilfe schaffen: Durch eine Voruntersuchung ließe sich bestimmen, welcher Strahlenexposition die Nieren des einzelnen Patienten tatsächlich ausgesetzt wären. So könnte die therapeutische Aktivität oder die Anzahl der Therapiezyklen individuell angepasst werden. Diese Voruntersuchungen, die ein erster Schritt auf dem Weg zur personalisierten Radionuklidtherapie wären, werden derzeit jedoch nicht von den Krankenkassen finanziert.

Lesen Sie auch:

Strahlentherapie soll direkt im Körper starten – MedLabPortal


Redaktion: X-Press Journalistenbüro GbR

Gender-Hinweis. Die in diesem Text verwendeten Personenbezeichnungen beziehen sich immer gleichermaßen auf weibliche, männliche und diverse Personen. Auf eine Doppel/Dreifachnennung und gegenderte Bezeichnungen wird zugunsten einer besseren Lesbarkeit verzichtet.