Alphafold2 revolutioniert Proteindesign
Ein internationales Forschungsteam hat eine Methode entwickelt, mit der sich große neue Proteine am Computer besser als bisher entwerfen und im Labor mit den gewünschten Eigenschaften herstellen lassen. Sie nutzen dafür unter anderem die Fähigkeiten der KI-basierten Software Alphafold2, für die es den Chemie-Nobelpreis gab, auf eine neue Art und Weise.
Ein Team unter Leitung von Hendrik Dietz, Professor für Biomolekulare Nanotechnologie an der Technischen Universität München (TUM), und von Sergey Ovchinnikov, Professor für Biologie am Massachusetts Institute of Technology (MIT), hat ein Verfahren entwickelt, mit dem sich die akkurate Strukturvorhersage von Alphafold2 zusammen mit einem sogenannten Gradient Descent Ansatz für effizientes Proteindesign nutzen lässt. Publiziert wurde es im Fachjournal Science.
Gradient Descent ist eine gängige Methode zur Modelloptimierung. In einem schrittweisen Prozess kann man damit Abweichungen zur gewünschten Zielfunktion erkennen und die Parameter immer weiter anpassen, bis das optimale Ergebnis erreicht ist. Im Proteindesign kann Gradient Descent dabei helfen, die durch AlphaFold2 vorhergesagte Proteinstruktur neuer Proteine gegen die gewünschte Proteinstruktur abzugleichen. So können Wissenschaftlerinnen und Wissenschaftler ihre neu entworfene Aminosäurenkette und die daraus entstehende Struktur immer weiter optimieren. Letztere bestimmt maßgeblich die Stabilität und Funktion des Proteins und hängt von feinen energetischen Wechselwirkungen ab.
Mit dem neuen Verfahren lassen sich große neue Proteine besser als bisher designen und mit den gewünschten Eigenschaften versehen, zum Beispiel um passgenau an andere Proteine zu binden. Ihr Designprozess unterscheidet sich an verschiedenen Stellen von bisherigen Vorgehensweisen.
Das Team hat mit der neuen Methode über 100 Proteine nicht nur virtuell entworfen, sondern auch im Labor hergestellt und experimentell überprüft. Mit ihrer neuen Methode konnten sie Proteine aus bis zu 1000 Aminosäuren herstellen. „Wir nähern uns damit der Größe von Antikörpern an und können – wie bei Antikörpern auch – dann mehrere gewünschte Funktionen in ein solches Protein integrieren“, erläutert Hendrik Dietz. „Das könnten beispielsweise Motive zur Erkennung und Unterdrückung von Krankheitserregern sein.“
Original Paper:
Scalable protein design using optimization in a relaxed sequence space | Science
Lesen Sie auch:
Erstmals 3D-Form von Proteinen in herkömmlichem Mikroskop sichtbar – MedLabPortal
Redaktion: X-Press Journalistenbüro GbR
Gender-Hinweis. Die in diesem Text verwendeten Personenbezeichnungen beziehen sich immer gleichermaßen auf weibliche, männliche und diverse Personen. Auf eine Doppel/Dreifachnennung und gegenderte Bezeichnungen wird zugunsten einer besseren Lesbarkeit verzichtet.